Section 2.6: Graphs of Basic Functions

Video 1

A function is continuous over its domain if you can sketch its graph without having to lift your pencil.

1) Draw the graph of a function that has a discontinuity at the given value(s), and state the intervals of continuity.
a) $x=3$
b) $x=-1$ and $x=5$

Video 2
2) Graph the identity function $f(x)=x$.

3) Graph the squaring function $f(x)=x^{2}$.

4) Graph the cubing function $f(x)=x^{3}$.

		10^{x}											
X	$f(x)$						8						
-2							6		-		-		
-2													
-1							4		-	-	-		-
0							2						
1		-10		-6	-4	-2			2	4	6	8	${ }^{10} \times$
							-2						
2							-2						
							-4						-
													-
							$-^{6}$						
							${ }^{-8}$						-
							-10						\square

5) Graph the square root function $f(x)=\sqrt{x}$.

6) Graph the cube root function $f(x)=\sqrt[3]{x}$.

		10^{x}											
X	$f(x)$						8						
-8							6						
-8													
-1							4		-		-		-
0							2						
1		-10		-6	-4	-2			2	4	6	8	${ }^{10} \times$
8							-2						
8							-2						
							-4						-
													-
							$-^{6}$						
							${ }^{-8}$						-
							-10			,			\square

7) Graph the absolute value function $f(x)=|x|$.

x	$f(x)$
-2	
-1	
0	
1	
2	

Video 3

A piecewise function is function that is defined by different rules over different intervals of its domain.

9) Graph the piecewise function.

$$
f(x)=\left\{\begin{array}{lll}
-x-2 & \text { if } & x \leq 0 \\
x^{2}-2 & \text { if } & x>0
\end{array}\right.
$$

Video 4
10) Graph the greatest integer function $f(x)=\llbracket x \rrbracket$.

		10^{7}											
					-		8						
X	$f(x)$						\bigcirc						
-2							6						
							4						
-1.5							4						
-1							2						
1													
-0.5		-10	- -8	-6	- -4	-2		2	2	4	6		$810 \times$
0							-2						-
							,						-
0.5							${ }^{4}$						
1							-6						
							-						
1.5							-8						
2							-10						\square

11) Graph $f(x)=\llbracket 2 x+1 \rrbracket$.

Video 5
12) Graph the relation $x=y^{2}$.

